Search results for "Chern class"

showing 10 items of 12 documents

Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups

2019

Let $k $ be the algebraic closure of a finite field of odd characteristic $p$ and $X$ a smooth projective scheme over the Witt ring $W(k)$ which is geometrically connected in characteristic zero. We introduce the notion of Higgs-de Rham flow and prove that the category of periodic Higgs-de Rham flows over $X/W(k)$ is equivalent to the category of Fontaine modules, hence further equivalent to the category of crystalline representations of the \'{e}tale fundamental group $\pi_1(X_K)$ of the generic fiber of $X$, after Fontaine-Laffaille and Faltings. Moreover, we prove that every semistable Higgs bundle over the special fiber $X_k$ of $X$ of rank $\leq p$ initiates a semistable Higgs-de Rham …

Ring (mathematics)Pure mathematicsChern classApplied MathematicsGeneral MathematicsHodge theory010102 general mathematics01 natural sciencesAlgebraic closureHiggs bundleÉtale fundamental groupMathematics - Algebraic GeometryMathematics::Algebraic Geometryp-adic Hodge theoryMathematics::K-Theory and HomologyScheme (mathematics)FOS: Mathematics14D07 14F300101 mathematicsAlgebraic Geometry (math.AG)MathematicsJournal of the European Mathematical Society
researchProduct

Quillen superconnections and connections on supermanifolds

2013

Given a supervector bundle $E = E_0\oplus E_1 \to M$, we exhibit a parametrization of Quillen superconnections on $E$ by graded connections on the Cartan-Koszul supermanifold $(M;\Omega (M))$. The relation between the curvatures of both kind of connections, and their associated Chern classes, is discussed in detail. In particular, we find that Chern classes for graded vector bundles on split supermanifolds can be computed through the associated Quillen superconnections.

Mathematics - Differential GeometryHigh Energy Physics - TheoryChern classGeneral Physics and AstronomyVector bundleFOS: Physical sciences53C07 58C50 81T13Mathematical Physics (math-ph)Mathematics::Algebraic TopologyAlgebraHigh Energy Physics::TheoryDifferential Geometry (math.DG)High Energy Physics - Theory (hep-th)Mathematics::K-Theory and HomologyBundleSupermanifoldFOS: MathematicsGeometry and TopologyMathematics::Differential GeometryParametrizationMathematics::Symplectic GeometryMathematical PhysicsMathematics
researchProduct

The J-invariant, Tits algebras and Triality

2012

In the present paper we set up a connection between the indices of the Tits algebras of a simple linear algebraic group $G$ and the degree one parameters of its motivic $J$-invariant. Our main technical tool are the second Chern class map and Grothendieck's $\gamma$-filtration. As an application we recover some known results on the $J$-invariant of quadratic forms of small dimension; we describe all possible values of the $J$-invariant of an algebra with orthogonal involution up to degree 8 and give explicit examples; we establish several relations between the $J$-invariant of an algebra $A$ with orthogonal involution and the $J$-invariant of the corresponding quadratic form over the functi…

Linear algebraic groupDiscrete mathematicsInvolution (mathematics)Pure mathematicsAlgebra and Number TheoryChern classTrialityj-invariant010102 general mathematicsMathematics - Rings and Algebras01 natural sciencesMathematics - Algebraic GeometryRings and Algebras (math.RA)0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsAlgebraic Geometry (math.AG)Function field20G15 14C25 14L30 16W10 11E04Mathematics
researchProduct

Haldane Model at finite temperature

2019

We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topolog…

Statistics and ProbabilityPhase transitionGeneralizationFOS: Physical sciencesConductivity01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsPhase (matter)0103 physical sciencesStatistical physics010306 general physicsCondensed Matter - Statistical MechanicsPhysicstopological insulatorQuantum PhysicsChern classStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)Topological phase of matter phase transition geometric phase quantum transportStatistical and Nonlinear PhysicsTransverse planeTopological insulatorStatistics Probability and UncertaintyQuantum Physics (quant-ph)Sign (mathematics)
researchProduct

On the stability of flat complex vector bundles over parallelizable manifolds

2017

We investigate the flat holomorphic vector bundles over compact complex parallelizable manifolds $G / \Gamma$, where $G$ is a complex connected Lie group and $\Gamma$ is a cocompact lattice in it. The main result proved here is a structure theorem for flat holomorphic vector bundles $E_\rho$ associated to any irreducible representation $\rho : \Gamma \rightarrow \text{GL}(r,{\mathbb C})$. More precisely, we prove that $E_{\rho}$ is holomorphically isomorphic to a vector bundle of the form $E^{\oplus n}$, where $E$ is a stable vector bundle. All the rational Chern classes of $E$ vanish, in particular, its degree is zero. We deduce a stability result for flat holomorphic vector bundles $E_{\r…

Mathematics - Differential GeometryPure mathematicsParallelizable manifoldChern class010102 general mathematicsHolomorphic functionVector bundleLie groupGeneral MedicineStable vector bundle01 natural sciences53B21 53C56 53A55010101 applied mathematicsMathematics - Algebraic GeometryDifferential Geometry (math.DG)Irreducible representationFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryQuotientMathematicsComptes Rendus Mathematique
researchProduct

Chiralities of nodal points along high symmetry lines with screw rotation symmetry

2021

Screw rotations in nonsymmorphic space group symmetries induce the presence of hourglass and accordion shape band structures along screw invariant lines whenever spin-orbit coupling is nonnegligible. These structures induce topological enforced Weyl points on the band intersections. In this work we show that the chirality of each Weyl point is related to the representations of the cyclic group on the bands that form the intersection. To achieve this, we calculate the Picard group of isomorphism classes of complex line bundles over the 2-dimensional sphere with cyclic group action, and we show how the chirality (Chern number) relates to the eigenvalues of the rotation action on the rotation …

Condensed Matter - Materials ScienceChern classComplex lineMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCyclic group02 engineering and technology021001 nanoscience & nanotechnologyCoupling (probability)01 natural sciences0103 physical sciencesHomogeneous spaceFOS: MathematicsAlgebraic Topology (math.AT)Equivariant mapMathematics - Algebraic TopologyInvariant (mathematics)Symmetry (geometry)010306 general physics0210 nano-technologyMathematical physics
researchProduct

Uhlmann number in translational invariant systems

2019

We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and to the dynamical conductivity, respectively.

0301 basic medicineSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciMathematics::Analysis of PDEsFOS: Physical scienceslcsh:MedicineCurvatureArticleCondensed Matter - Strongly Correlated Electrons03 medical and health sciences0302 clinical medicineTopological insulatorsInvariant (mathematics)lcsh:ScienceCondensed Matter - Statistical MechanicsMathematicsMathematical physicsPhysical quantityQuantum PhysicsMultidisciplinaryChern classStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)lcsh:RUhlmann number Chern number 2D topological Fermionic systems finite temperature dynamical susceptibility dynamical conductivity030104 developmental biologylcsh:QQuantum Physics (quant-ph)Theoretical physicsLinear response theory030217 neurology & neurosurgeryScientific Reports
researchProduct

On globally generated vector bundles on projective spaces II

2014

Extending a previous result of the authors, we classify globally generated vector bundles on projective spaces with first Chern class equal to three.

Pure mathematicsAlgebra and Number TheoryChern–Weil homomorphismChern classComplex projective spaceMathematical analysisVector bundleMathematics - Algebraic GeometryLine bundleFOS: MathematicsProjective spaceTodd classSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Splitting principleMathematicsGlobally generated Vector bundles Projective Space
researchProduct

Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks

2017

We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the $\nu=1/2$ fractional quantum Hall effect on the lattice. We address the robustness of the ground state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill,…

FOS: Physical sciencesQuantum entanglementQuantum Hall effectExpected value01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsQuantum spin Hall effectQuantum mechanics0103 physical sciencesElectronicEntropy (information theory)Optical and Magnetic Materials010306 general physicsBosonPhysicsQuantum PhysicsChern classStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter PhysicsQuantum Gases (cond-mat.quant-gas)cond-mat.quant-gas; cond-mat.quant-gas; Physics - Strongly Correlated Electrons; Quantum Physics; Electronic Optical and Magnetic Materials; Condensed Matter PhysicsFractional quantum Hall effectPhysics - Strongly Correlated ElectronsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)cond-mat.quant-gasPhysical Review B
researchProduct

Chern classes of the moduli stack of curves

2005

Here we calculate the Chern classes of ${\bar {\mathcal M}}_{g,n}$, the moduli stack of stable n-pointed curves. In particular, we prove that such classes lie in the tautological ring.

Pure mathematicsChern classChern–Weil homomorphismGeneral MathematicsMathematical analysisCharacteristic classModuliModuli of algebraic curvesMathematics - Algebraic GeometryMathematics::Algebraic GeometryGenus (mathematics)FOS: Mathematicschern classes moduli stackTodd classSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)MathematicsStack (mathematics)
researchProduct