Search results for "Chern class"
showing 10 items of 12 documents
Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups
2019
Let $k $ be the algebraic closure of a finite field of odd characteristic $p$ and $X$ a smooth projective scheme over the Witt ring $W(k)$ which is geometrically connected in characteristic zero. We introduce the notion of Higgs-de Rham flow and prove that the category of periodic Higgs-de Rham flows over $X/W(k)$ is equivalent to the category of Fontaine modules, hence further equivalent to the category of crystalline representations of the \'{e}tale fundamental group $\pi_1(X_K)$ of the generic fiber of $X$, after Fontaine-Laffaille and Faltings. Moreover, we prove that every semistable Higgs bundle over the special fiber $X_k$ of $X$ of rank $\leq p$ initiates a semistable Higgs-de Rham …
Quillen superconnections and connections on supermanifolds
2013
Given a supervector bundle $E = E_0\oplus E_1 \to M$, we exhibit a parametrization of Quillen superconnections on $E$ by graded connections on the Cartan-Koszul supermanifold $(M;\Omega (M))$. The relation between the curvatures of both kind of connections, and their associated Chern classes, is discussed in detail. In particular, we find that Chern classes for graded vector bundles on split supermanifolds can be computed through the associated Quillen superconnections.
The J-invariant, Tits algebras and Triality
2012
In the present paper we set up a connection between the indices of the Tits algebras of a simple linear algebraic group $G$ and the degree one parameters of its motivic $J$-invariant. Our main technical tool are the second Chern class map and Grothendieck's $\gamma$-filtration. As an application we recover some known results on the $J$-invariant of quadratic forms of small dimension; we describe all possible values of the $J$-invariant of an algebra with orthogonal involution up to degree 8 and give explicit examples; we establish several relations between the $J$-invariant of an algebra $A$ with orthogonal involution and the $J$-invariant of the corresponding quadratic form over the functi…
Haldane Model at finite temperature
2019
We consider the Haldane model, a 2D topological insulator whose phase is defined by the Chern number. We study its phases as temperature varies by means of the Uhlmann number, a finite temperature generalization of the Chern number. Because of the relation between the Uhlmann number and the dynamical transverse conductivity of the system, we evaluate also the conductivity of the model. This analysis does not show any sign of a phase transition induced by the temperature, nonetheless it gives a better understanding of the fate of the topological phase with the increase of the temperature, and it provides another example of the usefulness of the Uhlmann number as a novel tool to study topolog…
On the stability of flat complex vector bundles over parallelizable manifolds
2017
We investigate the flat holomorphic vector bundles over compact complex parallelizable manifolds $G / \Gamma$, where $G$ is a complex connected Lie group and $\Gamma$ is a cocompact lattice in it. The main result proved here is a structure theorem for flat holomorphic vector bundles $E_\rho$ associated to any irreducible representation $\rho : \Gamma \rightarrow \text{GL}(r,{\mathbb C})$. More precisely, we prove that $E_{\rho}$ is holomorphically isomorphic to a vector bundle of the form $E^{\oplus n}$, where $E$ is a stable vector bundle. All the rational Chern classes of $E$ vanish, in particular, its degree is zero. We deduce a stability result for flat holomorphic vector bundles $E_{\r…
Chiralities of nodal points along high symmetry lines with screw rotation symmetry
2021
Screw rotations in nonsymmorphic space group symmetries induce the presence of hourglass and accordion shape band structures along screw invariant lines whenever spin-orbit coupling is nonnegligible. These structures induce topological enforced Weyl points on the band intersections. In this work we show that the chirality of each Weyl point is related to the representations of the cyclic group on the bands that form the intersection. To achieve this, we calculate the Picard group of isomorphism classes of complex line bundles over the 2-dimensional sphere with cyclic group action, and we show how the chirality (Chern number) relates to the eigenvalues of the rotation action on the rotation …
Uhlmann number in translational invariant systems
2019
We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and to the dynamical conductivity, respectively.
On globally generated vector bundles on projective spaces II
2014
Extending a previous result of the authors, we classify globally generated vector bundles on projective spaces with first Chern class equal to three.
Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks
2017
We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the $\nu=1/2$ fractional quantum Hall effect on the lattice. We address the robustness of the ground state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill,…
Chern classes of the moduli stack of curves
2005
Here we calculate the Chern classes of ${\bar {\mathcal M}}_{g,n}$, the moduli stack of stable n-pointed curves. In particular, we prove that such classes lie in the tautological ring.